

Shoemakersville Borough Water System Annual Water Quality Report PWS 3060100

We're pleased to present to you this year's Annual Drinking Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our primary water supply comes from 3 wells that feed our primary water filtration plant. At this treatment plant, we adjust the pH to control corrosion, filter the water to remove contaminants and improve the taste and odor and then add chlorine to control microbiological contaminants. We also have 2 backup wells that are treated with chlorine when in use.

Este informe contiene informacion muy importante sobre su agua beber. Traduzcalo o hable con alguin que lo entienda bien.

If you have any questions about this report or concerning your water utility, please contact:

Shoemakersville Borough Paul Gruber 846 Main Street Shoemakersville, PA 19555 610-562-8030

Shoemakersville Boro Water System routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2022. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Information about Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associate with service lines and home plumbing. Shoemakersville Boro Water System is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Water Quality Data

Chemical Contaminants								
Contaminant (Units)	Violation Y/N	Level Detected	Range	MCL	MCLG	Major Sources in Drinking Water		
Barium (ppm) Sampled in 2021	No	0.592	0.123 to 0.592	2	2	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits		
Chlorine (ppm)	No	1.92	0.91 to 1.92	4	4	Water additive used to control microbes.		
Haloacetic Acids (HAA) (ppb)	No	1.1	ND to 1.1	60	N/A	By-product of drinking water chlorination		
Nickel (ppb) Sampled in 2021	No	4	ND to 4	N/A	N/A	Erosion of natural deposits and Industrial uses. The EPA remanded the MCL for Nickel in 1995, however, it is still required to be monitored.		
Nitrate (ppm)	No	3.4	2.91 to 3.4	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits		
TTHM Total Trihalomethanes (ppb)	No	15.6	7.4 to 15.6	80	N/A	By-product of drinking water chlorination		
Combined radium (pCi/L) Sampled in 2021	No	0.112	0.102 to 0.112	5	0	Erosion of natural deposits		

Entry Point Disinfectant Residual							
	Minimum Disinfectant		Range of	Llusita	Sample	Violation	Sources of
Contaminant	Residual	Level Detected	Detections	Units	Date	Y/N	Contamination
Chlorine	0.4	0.4	0.4 to 2.24	ppm	2022	No	Water additive used to control microbes.

Lead and Copper (sampled in 2022)								
Contaminant	Action Level (AL)	MCLG	90 th Percentile Value	Units	# of Sites Above AL of Total Sites	Violation Of TT Y/N	Sources of Contamination	
Copper	1.3	1.3	0.611	ppm	0	No	Corrosion of household plumbing	
Lead	15	0	1	ppb	0	No	Corrosion of household plumbing.	

In the above tables, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Parts per million (ppm) or Milligrams per liter (mg/l) – one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Action Level (AL) –the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) – The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) – The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Non-Detects (ND) - laboratory analysis indicates that the contaminant is not present at a detectable level

Additional Information

As you can see by the table, our system had no violations because of contaminated water in 2022. We did receive violations in July, August, November and December for reporting chlorine results after the required deadline. We have learned through our monitoring and testing that some constituents have been detected. These contaminants are listed in the table above. The state allows us to monitor for some contaminants less than once a year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

All sources of drinking water are subject to potential contaminants that are naturally occurring or manmade. Those contaminants can be microbes, organic or inorganic chemicals, or radioactive materials. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- -Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- -Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial process and petroleum production and mining activities.
- -Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.